Role of the hydrological cycle in regulating the planetary climate system of a simple nonlinear dynamical model

نویسندگان

  • K. M. Nordstrom
  • V. K. Gupta
چکیده

We present the construction of a dynamic area fraction model (DAFM), representing a new class of models for an earth-like planet. The model presented here has no spatial dimensions, but contains coupled parameterizations for all the major components of the hydrological cycle involving liquid, solid and vapor phases. We investigate the nature of feedback processes with this model in regulating Earth’s climate as a highly nonlinear coupled system. The model includes solar radiation, evapotranspiration from dynamically competing trees and grasses, an ocean, an ice cap, precipitation, dynamic clouds, and a static carbon greenhouse effect. This model therefore shares some of the characteristics of an Earth System Model of Intermediate complexity. We perform two experiments with this model to determine the potential effects of positive and negative feedbacks due to a dynamic hydrological cycle, and due to the relative distribution of trees and grasses, in regulating global mean temperature. In the first experiment, we vary the intensity of insolation on the model’s surface both with and without an active (fully coupled) water cycle. In the second, we test the strength of feedbacks with biota in a fully coupled model by varying the optimal growing temperature for our two plant species (trees and grasses). We find that the negative feedbacks associated with the water cycle are far more powerful than those associated with the biota, but that the biota still play a significant role in shaping the model climate. third experiment, we vary the heat and moisture transport coefficient in an attempt to represent changing atmospheric circulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical modeling of optimized SIRS epidemic model and some dynamical behavior of the solution

In this paper, a generalized mathematical model of spread of infectious disease as SIRS epidemic model is considered as a nonlinear system of differential equation. We prove that for positive initial conditions the resulting equivalence system has positive solution and under some hypothesis, this system with initial positive condition, has a positive $T$-periodic solution which is globally asym...

متن کامل

Forecasting of Groundwater Table and Water Budget under Different Drought Scenarios using MODFLOW Model (Case Study: Garbaygan Plain, Fars Province, Iran)

Groundwater drought is a natural hazard that develops when groundwater systems are affected by climatical drought, when climatical drought occures, first groundwater recharge, later groundwater levels and groundwater discharge decrease. The origin of drought is a deficit in precipitation and that takes place in all the elements that comprise the hydrological cycle (flow in the rivers, soil mois...

متن کامل

بررسی اثرات تغییر اقلیم بر رواناب سطحی در حوضه آبخیز بازفت

With regard to the confirmation of climate change in most regions of the world and its effects on different parts of the water cycle, knowledge of the status of water resources is necessary for proper management of resources and planning for the future. Hence many studies have been done in different areas with the aim of analyzing the impact of climate change on hydrological processes in the up...

متن کامل

The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion

In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...

متن کامل

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005